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Abstract Whereas antibipolar drug administration to rats
reduces brain arachidonic acid turnover, excessive N-
methyl-D-aspartate (NMDA) signaling is thought to contrib-
ute to bipolar disorder symptoms and may increase
arachidonic acid turnover in rat brain phospholipids. To
determine whether chronic NMDA would increase brain
arachidonic acid turnover, rats were daily administered
NMDA (25 mg/kg, ip) or vehicle for 21 days. In un-
anesthetized rats, on day 21, [1-14C]arachidonic acid was
infused intravenously and arterial blood plasma was
sampled until the animal was euthanized at 5 min and its
microwaved brain was subjected to chemical and radio-
tracer analysis. Using equations from our in vivo fatty acid
model, we found that compared with controls, chronic
NMDA increased the net rate of incorporation of plasma
unesterified arachidonic acid into brain phospholipids (25–
34%) as well as the turnover of arachidonic acid within brain
phospholipids (35–58%). These changes were absent at 3 h
after a single NMDA injection. The changes, opposite to
those after chronic administration of antimanic drugs to
rats, suggest that excessive NMDA signaling via arachidonic
acid may be a model of upregulated arachidonic acid turn-
over in brain phospholipids.—Lee, H-J., J. S. Rao, L. Chang,
S. I. Rapoport, and R. P. Bazinet. Chronic N-methyl-D-
aspartate administration increases the turnover of arachi-
donic acid within brain phospholipids of the unanesthetized
rat. J. Lipid Res. 2008. 49: 162–168.
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Glutamatergic synapses are highly abundant in the
central nervous system, constituting .70% of synapses
(1, 2). Glutamate receptors are classified into two major
classes, ionotropic and metabotropic. Ionotropic gluta-
mate receptors are further classified based on their selec-
tivity into a-amino-3 hydroxy-5-methyl-4-isoxazolprorionic
acid, kainate, or N-methyl-D-aspartate (NMDA) receptors.

NMDA receptor function is believed to be altered in sev-
eral brain disorders (3), including Alzheimer’s disease (4,
5), schizophrenia (6, 7), major depression (8), and bipolar
disorder (9–15).

Activation of NMDA receptors induces an influx of
extracellular calcium into neurons, stimulating many
calcium-dependent signals (16), including arachidonic
acid (20:4n-6) release from membrane phospholipids
(17–19). Arachidonic acid is a polyunsaturated fatty acid
found mainly in the sn-2 position of brain phospholipids
(20). Multiple neuroreceptor-mediated processes, includ-
ing ionotropic NMDA receptors, release arachidonic acid
via coupling to the activation of calcium-dependent cyto-
solic phospholipase A2 (cPLA2) (21, 22). A portion of the
released unesterified arachidonic acid can be converted
to eicosanoids (23, 24) or b-oxidized (25), whereas the
majority is recycled into membrane phospholipid via the
Lands pathway (20, 26). Arachidonic acid signaling has
been implicated in bipolar disorder (27), because chronic
antimanic drug administration (lithium, carbamazepine,
or valproate) to rats decreases arachidonic acid turnover
in their brain phospholipids (28–30). Furthermore, chronic
lithium or carbamazepine administration to rats decreases
the expression of brain cPLA2 (31, 32), whereas chronic
NMDA administration increases brain cPLA2 expression
(33). Thus, chronic NMDA administration also may in-
crease arachidonic acid turnover in rat brain phospholipids.

Drugs effective in the manic phase of bipolar disorder
decrease the turnover of arachidonic acid in rat brain
phospholipids (27, 34–36). Because NMDA receptor ac-
tivation can stimulate brain cPLA2, we hypothesized that
chronic NMDA administration to rats would increase
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brain arachidonic acid turnover, opposite to what has
been reported with chronic antimanic drug administra-
tion (28–30). Thus, chronic NMDA-treated rats may be
a model of upregulated brain arachidonic acid turnover.
To test this hypothesis, rats were administered NMDA
(25 mg/kg/day, ip, for 21 days), a dose shown to be sub-
convulsive (37) and to increase the incorporation coeffi-
cient of arachidonic acid into brain phospholipids at
10 min after administration (38). We applied our in vivo
brain fatty acid turnover technique (20, 39) to rats after re-
peated (chronic) or a single NMDA injection and found
that only chronic NMDA increased arachidonic acid turn-
over in their brain phospholipids.

MATERIALS AND METHODS

Animals

This study was conducted according to the National Institutes
of Health Guidelines for the Care and Use of Laboratory Animals
(Publication 80-23) and was approved by the National Institute of
Child Health and Human Development Animal Care and Use
Committee. Male CDF-344 rats, weighing 180–190 g (Charles
River, Wilmington, MA), were acclimatized for 1 week in an
animal facility in which temperature, humidity, and light cycle
were controlled and had ad libitum access to food (NIH-31) and
water. They were randomized to either chronic or single NMDA
treatment (n 5 15) or a control group (n 5 12). Chronic NMDA-
treated rats received 25 mg/kg/day (ip) NMDA (Sigma Chemical
Co., St. Louis, MO) dissolved in 0.9% saline once daily for
21 days, whereas single NMDA-injected animals (n 5 11) re-
ceived the same volume of vehicle (0.9% saline) once daily,
intraperitoneally, also for 20 days, and then on day 21 received
one intraperitoneal injection of 25 mg/kg NMDA. Controls re-
ceived the same volume of vehicle (0.9% saline) once daily for
21 days. We reported that this chronic NMDA dosing regimen
increases brain cPLA2 activity, protein, and mRNA (33). On day
21, rats were anesthetized with 1–3% halothane. Polyethylene
catheters were inserted into a femoral artery and vein, as re-
ported (30). Rats were allowed to recover from surgery, and
30 min after the removal of halothane anesthesia they were
injected with the appropriate treatment with their hindquarters
loosely wrapped and taped to a wooden block. During recovery,
arterial blood pressure was monitored and temperature was
maintained at 37jC by means of a rectal probe and heating
element (Indicating Temperature Controller; Yellow Springs
Instrument Co., Yellow Springs, OH).

Infusion of [1-14C]arachidonic acid and tissue sampling

[1-14C]arachidonic acid (50 mCi/mmol, .98% pure; Moravek
Biochemicals, Brea, CA) was prepared in saline containing 3%
fatty acid-free BSA (Sigma) as described previously (30, 40).
Three hours after the last injection, unanesthetized rats were
infused intravenously for 5 min with 1 ml containing 170 mCi/kg
arachidonic acid at a rate of 0.223 (1-e21.92t) ml/min with a
computer-controlled variable-rate infusion pump (No. 22;
Harvard Apparatus, South Natick, MA), to achieve a steady-state
plasma specific activity within 1 min (29, 30, 41). Arterial blood
samples were collected at 0, 15, 30, 45, 90, 180, 240, and 300 s
during infusion to determine the radioactivity and unlabeled
concentrations of nonesterified arachidonic acid in plasma.
Five minutes after starting infusion, the rat was anesthetized
with sodium pentobarbital (20 mg/kg, iv) and subjected to

head-focused microwave irradiation to stop brain metabolism
(5.5 kW, 3.4 s; Cober Electronics, Stamford, CT) (42, 43). The
brain was excised, bisected sagittally, and stored at 280jC for
further analysis.

Brain lipid extraction and chromatography

Total lipids were extracted from frozen plasma and from one
brain hemisphere by the method of Folch, Lees, and Sloane
Stanley (44). Heptadecanoic acid (17:0) was added as an internal
standard to plasma before extraction. The extracts were
separated by thin-layer chromatography on silica gel plates
(Whatman, Clifton, NJ). Unesterified fatty acids were separated
using a mixture of heptane-diethyl ether-glacial acetic acid
(60:40:2, v/v) (45), and phospholipids [choline glycerophos-
pholipid (ChoGpl), phosphatidylserine (PtdSer), phosphatidyl-
inositol (PtdIns), and ethanolamine glycerophospholipid
(EtnGpl)] were separated in chloroform-methanol-water-glacial
acetic acid (60:50:4:1, v/v) (46) and identified with unlabeled
standards in separate lanes. Phospholipid and standard bands
were visualized with 6-p-toluidine-2-naphthalene-sulfonic acid
(Acros, Fairlawn, NJ) under ultraviolet light. Each band was
removed and analyzed for radioactivity by liquid scintillation
counting. Phospholipid bands also were individually scraped and
200 ml of toluene was added with a known amount of di-
17:0-PtdCho for quantification before methylation. Fatty acid
methyl esters were formed by heating the phospholipid scrapings
in 1% H2SO4 in methanol at 70jC for 3 h (47). The methyl esters
were separated on a 30 m 3 0.25 mm inner diameter capillary
column (SP-2330; Supelco, Bellefonte, PA) using gas chroma-
tography with a flame ionization detector (model 6890N; Agilent
Technologies, Palo Alto, CA). Runs were initiated at 80jC,
with a temperature gradient to 160jC (10jC/min) and 230jC
(3jC/min) in 31 min, and held at 230jC for 10 min. Peaks were
identified by retention times of fatty acid methyl ester standards
(Nu-Chek-Prep, Elysian, MN). Fatty acid concentrations (nmol/g
brain or nmol/ml plasma) were calculated by proportional
comparison of gas chromatography peak areas to that of the 17:0
internal standard. Tracer identification and separation were
performed on fatty acid methyl esters of pooled plasma samples
(at the end of the infusion) and pooled brain total lipid extracts
as described above. The fatty acid methyl esters were separated
as described previously with slight modifications (48) using an
HPLC system (Beckman, Fullerton, CA) equipped with an in-line
ultraviolet/visible light detector (l5 242 nm; Gilson, Middleton,
WI) and an in-line scintillation counter (b-RAM; IN/US Sys-
tem, Tampa, FL) with a Luna C18 column (Phenomenex,
Torrance, CA). Initial conditions were set to a 1 ml/min gradient
system composed of 100% water (A) and 100% acetonitrile (B).
The gradient started with 85% B for 30 min, then increased
to 100% B over 10 min, where it was held for 20 min before
returning to 85% B over 5 min.

Quantification of labeled and unlabeled acyl-CoA

Acyl-CoA species were isolated from the remaining half-brain
by the method of Deutsch et al. (49). Weighed brain and a known
amount of 17:0-CoA as an internal standard were placed in a
15 ml conical vial before sonicating the brain in 25 mM
potassium phosphate. Isopropanol (2 ml) was added to the vial,
and the homogenate was sonicated again. Saturated ammonium
sulfate (0.25 ml) was added, and the sample was lightly shaken
by hand. Acetonitrile (4 ml) was added, and the sample was vor-
texed for 10 min before centrifugation. The upper phase
was extracted, and 10 ml of 25 mM potassium phosphate was
added. Each sample was run three times through an activated
oligonucleotide purification cartridge (Applied Biosystems,
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Foster City, CA), washed with 10 ml of 25 mM potassium
phosphate, and eluted with 400 ml of isopropanol-1 mM glacial
acetic acid (75:25, v/v). Samples were dried under nitrogen and
reconstituted in 100 ml of isopropanol-1 mM glacial acetic acid
(75:25, v/v) for HPLC analysis. Acyl-CoA species were separated
using HPLC (Beckman) with a Symmetry C-18, 5 mm column
(250 3 4.6 mm; Waters-Millipore Corp., Milford, MA). Condi-
tions were set to a 1 ml/min gradient system composed of 75 mM
potassium phosphate (A) and 100% acetonitrile (B). The
gradient started with 44% B, increased to 49% over 25 min and
then to 70% over 5 min, remained at 70% for 9 min, and
returned to 44% over 4 min and was held there for 4 min (end
of run). Concentrations of acyl-CoA species and their associated
radioactivity were measured using peak area analysis from HPLC
chromatograms relative to 17:0-CoA and liquid scintillation
counting. These values were used to calculate the specific ac-
tivities of arachidonoyl-CoA.

Calculations

The model for determining the in vivo kinetics of brain fatty
acids in rats has been described in detail elsewhere (20, 50).
Briefly, unidirectional incorporation coefficients (ki*; ml/s/g) of
[1-14C]arachidonic acid, representing incorporation from plasma
into brain phospholipid compartments i, were calculated as:

ki* 5
c*br,i(T)

#
T

Oc*pl dt
Eq: 1

where C*br,i(T) (nCi/g) is the radioactivity of brain lipid i at time T
of 5 min (time of termination of experiment), t is time after
beginning the infusion, and c*pl (nCi/ml) is the plasma concen-
tration of labeled unesterified arachidonic acid during infusion.
Integrals of plasma radioactivity were determined by trapezoidal
integration. The de novo brain synthesis of arachidonic acid from
its dietary precursor linoleic acid (18:2n-6) represents ,0.5% of
the arachidonic acid within the brain (51); thus, net rates of in-
corporation of nonesterified arachidonic acid from plasma into
brain phospholipid i ( Jin,i), and from brain arachidonoyl-CoA into
brain phospholipid i ( JFA,i), were calculated as follows:

Jin,i 5 ki*cpl Eq: 2

JFA,i 5
Jin,i
l

Eq: 3

where cpl (nmol/ml) is the concentration of unlabeled nonester-
ified arachidonic acid in plasma. The “dilution factor” l is defined
as the steady-state ratio during [1-14C]arachidonic acid infusion of
the specific activity of the brain arachidonoyl-CoA pool to plasma
specific activity of unesterified arachidonic acid:

l 5
c*br,CoA/cbr,CoA

c*pl/cpl
Eq: 4

The steady state is reached within 1 min after infusion begins (41,
52). The fractional turnover rate of arachidonic acid within
phospholipid i (FFA,i; %/h) is defined as:

FFA,i 5
JFA,i
cbr,i

Eq: 5

Data and statistics

Data are presented as means 6 SD. One-way ANOVA with
Tukey’s pairwise posthoc test was used to compare means
between chronic NMDA-treated, single NMDA-injected, and

control animals (SAS 9.0; Cary, NC). Statistical significance was
taken as P < 0.05.l

RESULTS

Body weight

Body weights did not differ significantly between
groups after 21 days of treatment (270 6 8, 263 6 11,
and 264 6 9 g for chronic NMDA, single NMDA, and con-
trol rats, respectively).

Plasma and brain fatty acids

As in our previous reports (34, 53), HPLC separation of
fatty acid methyl ester derivatives from pooled plasma total
lipid extracts confirmed that .97% of total lipid plasma
radioactivity represented labeled arachidonic acid after
5 min of infusion of [1-14C]arachidonic acid across
treatment groups. HPLC separation of fatty acid methyl
ester derivatives from pooled brain total lipid extracts also
showed that .94% of total brain radioactivity was in the
form of [1-14C]arachidonic acid across treatment groups.
Percentage radioactivities from plasma and brain total
lipid extracts were comparable between the treatment
groups and control rats and are similar to those reported
in other studies (28, 34, 54).

Chronic or a single NMDA injection did not signifi-
cantly change the plasma concentration of unlabeled
unesterified arachidonic acid, or of other measured
plasma unesterified fatty acids (data not shown), com-
pared with control concentrations (Table 1). There was
no significant difference in the concentration of brain
arachidonoyl-CoA or any measured acyl-CoA species be-
tween chronic or single NMDA-injected and control rats
(Table 1). Chronic NMDA significantly increased the
unlabeled esterified arachidonic acid concentration in
ChoGpl and EtnGpl, by 10% and 18%, respectively, com-
pared with control values (Table 1). A single NMDA in-
jection did not alter the unlabeled esterified arachidonic
acid concentration in brain phospholipids compared with
controls. There was no significant difference in any other
measured unlabeled esterified fatty acid concentration in
brain phospholipids between the treatment groups and
compared with controls (Table 1).

Kinetics

The integral of the steady-state plasma radioactivity
(#T0c*pl dt; plasma input function) after the 5 min [1-14C]
arachidonic acid infusion was significantly higher in chronic
NMDA-treated rats (269,606 6 83,668 nCi/s/ml) compared
with rats receiving a single NMDA injection (124,213 6

15,000 nCi/s/ml) and control rats (124,468 6 12,296 nCi/
s/ml). Chronic but not a single NMDA injection increased
k*i (equation 1) of arachidonic acid in ChoGpl, PtdSer,
PtdIns, EtnGpl, and total phospholipids by 22, 25, 38, 39,
and 29%, respectively, compared with controls (Table 2).
Chronic but not a single NMDA injection increased Jin,i

(equation 2) in ChoGpl, PtdSer, PtdIns, EtnGpl, and total
phospholipids by 26, 25, 30, 25, and 34%, respectively,
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compared with controls (Table 2). l (equation 4) was
not significantly different between chronic (0.029 6 0.008)
or single NMDA-injected (0.036 6 0.014) and control
(0.036 6 0.019) rats. Chronic but not a single injection
of NMDA increased JFA,i (equation 3) in ChoGpl, PtdSer,
PtdIns, EtnGpl, and total phospholipids by 48, 40, 70, 55,
and 56%, respectively, compared with controls (Table 3).
The turnover rate of arachidonic acid (FFA,i; equation 5)
was significantly higher within brain ChoGpl (35%), PtdSer
(36%), PtdIns (58%), EtnGpl (50%), and total phospho-
lipids (41%) of rats chronically receiving NMDA com-
pared with controls (Table 3).

DISCUSSION

The baseline concentrations of plasma unesterified fatty
acids, brain esterified fatty acids, and brain acyl-CoA
species as well as the arachidonic acid kinetics in controls
are similar to those in previous reports (28, 34, 54). We
previously reported that chronic but not a single NMDA
injection to rats increases cPLA2 activity, protein, and
mRNA expression as well as the activity of the cPLA2

transcription factor, activator protein-2 (33). Consistent
with these findings, chronic but not single NMDA in-
jection increased the net rates of incorporation of ara-
chidonic acid into brain phospholipids from the brain
arachidonoyl-CoA pool ( JFA,i) and of arachidonic acid

turnover (FFA,i). Although decreased cPLA2 activity
correlates with reduced arachidonic acid turnover in rats
treated chronically with lithium or carbamazepine (28,
30–32), future mechanistic studies are needed to deter-
mine whether the increase in cPLA2 activity upon chronic
NMDA administration is directly responsible for the
increase in brain arachidonic acid turnover.

Collectively, the effects of chronic NMDA are opposite
to those in our previous reports, in which chronic ad-
ministration of lithium, carbamazepine, or valproate de-
creased arachidonic acid JFA,i and FFA,i in unanesthetized
rats (28–30, 45, 55). The reduction in arachidonic acid
turnover in rats chronically administered lithium or car-
bamazepine was associated with decreases in the activ-
ity, protein, and mRNA of the arachidonic acid-selective
cPLA2 (31, 32) as well as its transcription factor, activator
protein-2 (56–58), whereas valproate likely targeted an
arachidonic acid-selective fatty acyl-CoA synthetase (59).
Topiramate, a drug that initial nonrandomized trials sug-
gested was effective in bipolar disorder (60, 61) and that
was later found to have no therapeutic effect (62, 63),
upon chronic administration to rats did not alter ara-
chidonic acid turnover in brain phospholipids (54, 64).
Because increased NMDA receptor-mediated signaling
has been implicated in bipolar disorder (10, 65, 66) and
because chronic NMDA has the opposite effect on brain
arachidonic acid kinetics compared with each of the three
effective antimanic drugs in rats, chronic NMDA-treated

TABLE 2. Incorporation coefficients and net rates of incorporation from plasma unesterified arachidonic acid into major brain
glycerophospholipid classes in control, chronic NMDA, and single NMDA-injected rats

Incorporation Coefficient Net Rate of Incorporation

Phospholipid Control (n 5 12) Chronic NMDA (n 5 15) Single NMDA (n 5 11) Control (n 5 12) Chronic NMDA (n 5 15) Single NMDA (n 5 11)

ml/g/s 3 1025 nmol/g/s 3 1024

Total phospholipids 18.2 6 0.96 a 23.5 6 6.51 b 17.1 6 2.75 a 53.0 6 9.95 a 70.8 6 16.73 b 53.4 6 10.60 a
ChoGpl 8.2 6 0.64 a 10.0 6 2.49 b 7.6 6 1.39 a 23.9 6 4.57 a 30.1 6 7.23 b 23.7 6 4.65 a
PtdSer 1.6 6 0.20 a, b 2.0 6 0.63 b 1.5 6 0.27 a 4.8 6 1.11 6.0 6 1.44 4.8 6 1.11
PtdIns 6.1 6 0.46 a 8.4 6 2.29 b 5.7 6 1.03 a 17.6 6 3.17 a 25.3 6 5.90 b 17.9 6 4.04 a
EtnGpl 2.3 6 0.22 a 3.2 6 1.21 b 2.2 6 0.37 a 6.6 6 1.56 a 9.5 6 2.70 b 7.0 6 1.61 a

Infusion of [1-14C]arachidonic acid (170 mCi/kg) over 5 min. Control rats received saline for 21 days, chronic NMDA rats received 25 mg/kg
NMDA for 21 days, and single NMDA-injected rats received saline for 20 days and 25 mg/kg NMDA at day 21. Data are means 6 SD. Means within
a row not sharing a common lowercase letter are statistically different (P , 0.05).

TABLE 1. Arterial plasma unesterified arachidonic acid, brain arachidonoyl-CoA, and brain arachidonic acid
concentrations in major glycerophospholipid classes in control, chronic NMDA, and single NMDA-injected rats

Arachidonic Acid Pool Control (n 5 12) Chronic NMDA (n 5 15) Single NMDA (n 5 11)

Plasma unesterified
arachidonic acid (nmol/ml)

29.2 6 5.78 31.3 6 8.73 31.7 6 7.10

Brain (nmol/g)
Arachidonoyl-CoA 1.8 6 0.69 2.0 6 0.9 1.9 6 0.44
ChoGpl arachidonic acid 1,753 6 163 a 1,932 6 124 b 1,816 6 118 a, b
PtdSer arachidonic acid 551 6 72 596 6 46 545 6 43
PtdIns arachidonic acid 1,145 6 134 1,239 6 175 1,130 6 103
EtnGpl arachidonic acid 4,336 6 313 a 5,097 6 847 b 4,527 6 276 a

ChoGpl, choline glycerophospholipid; EtnGpl, ethanolamine glycerophospholipid; NMDA, N-methyl-D-
aspartate; PtdIns, phosphatidylinositol; PtdSer, phosphatidylserine. Control rats received saline for 21 days,
chronic NMDA rats received 25 mg/kg NMDA for 21 days, and single NMDA-injected rats received saline for
20 days and 25 mg/kg NMDA at day 21. Data are means 6 SD. Means within a row not sharing a common lower-
case letter are statistically different (P , 0.05).
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rats may represent a model of upregulated brain arachi-
donic acid metabolism. It would also be of interest to test
whether brain arachidonic acid turnover is increased in
other animal models of bipolar disorder (67).

In this regard, dietary n-3 polyunsaturated fatty acid
deprivation for 15 weeks after weaning in rats was reported
to increase scores on tests of aggression and depression,
symptoms found in bipolar disorder (68). This deprivation
also increased cPLA2 activity, protein, and mRNA in the
rat frontal cortex (35). It would be of interest to apply tests
of aggression and depression as well as other potential
bipolar disorder-related behaviors (67) in rats chronically
administered NMDA to compare the results with the n-3
polyunsaturated fatty acid deprivation regimen.

Clinical studies suggest that arachidonic acid signal-
ing is altered in patients with mood disorders, including
bipolar disorder (69, 70). Genetic studies have suggested
that alterations in the secretory PLA2 gene increase the
risk of bipolar disorder (71, 72) and that patients with
bipolar disorder have increased serum PLA2 activity
(73, 74). Increased phospholipid hydrolysis has been re-
ported in patients with affective disorders (70, 75–77), in-
cluding increased prostaglandin E2 levels in plasma (77),
cerebrospinal fluid (78), and saliva (79), whereas a post-
mortem study has reported decreased cortical cytosolic
prostaglandin E2 synthase in treated patients with bipolar
disorder (80).

In the current study, chronic but not a single injec-
tion of NMDA increased the net rate of incorporation
of unesterified plasma arachidonic acid into brain phos-
pholipids ( Jin,i). Jin,i represents the net rate of plasma
unesterified arachidonic acid incorporation into brain
phospholipids and at a steady state approximates the rate
of loss from brain (81). The finding that chronic NMDA
administration increased Jin,i suggests that arachidonic
acid metabolism was increased, possibly via conversion to
prostaglandin E2 or other oxidative species, and future
studies examining brain cyclooxygenase and prostaglan-
din E2 are warranted.

In conclusion, chronic NMDA administration to rats
increases the turnover of arachidonic acid in their brain
phospholipids. The effect is opposite to that of drugs ef-
fective in the manic phase of bipolar disorder. Thus, the

chronic NMDA-treated rat may represent a model of in-
creased arachidonic acid turnover in brain phospholipids.

The authors thank Dr. Mireille Basselin for valuable comments
on the study design. This work was entirely supported by the
Intramural Research Program of the National Institute on
Aging, National Institutes of Health.
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